

Excavation support solutions for a large underground parking

P. L. Oróstegui

Constructora Lancuyen Ltda., Concepción, Chile

F. A. Villalobos

Civil Engineering Department, Catholic University of Concepción, Chile

GeoMos, Moscow, Russia, 7th June 2010

Introduction

- Great Concepción expansion
- Necessity to build underground
- Loose sands and soft silts
- Soldier Pile Wall SPW (Berliner wall) widely used to sustain excavations
- High seismicity M_w > 8 (1558, 1570, 1657, 1751,

1835, 1960, 2010)

SPW characteristics

- Anchored SPW offers free movement within excavations
- Continuous and temporal support
- Made up of H-steel sections driven into the soil before digging
- H distances to be calculated, range between 1.2 and 3 m (1.6 m very common)
- Once digging timber laggings are inserted horizontally

More SPW characteristics

- Flexible without anchorage
- Permeable to water (if not, easy to do so)
- Good knowledge of soil geotechnical properties is key for design

The Tribunal car park project

Curved anchored Soldier Pile Wall

Soil mechanics information

- Silty sands SM, fines content is not plastic
- Soil mechanics studies focus mainly on foundation design
 → deeper soil below excavation
- Excavation support companies should participate from the beginning of the project
- Savings in incomplete soil mechanics studies for SPWs can lead actually to more expensive designs or to put in risk the construction

Soil	h m	γ kN/m ³	γ' kN/m ³	G _s	φ' _{cr}	RD, %	ϕ'_{\max}	<i>c</i> , kPa	(N ₁) ₆₀
Fill	0-2	17.5	7.5	2.6	30	45	30	0	15
SM	2-7	17.5	7.5	2.8	33	60	34	0	18
SM	7-16	20.7	10.7	2.8	34	82	37	0	36

Averaged values estimated from soil mechanics data

Design methodology

 Kranz (or block) method for one anchor

(Ranke & Ostermayer for more anchors)

Static and pseudo dynamic equilibrium analyses

Structural element	overburden, kPa
Street	10
Building, per floor	12
Tribunals at 3 m	100

Static analysis

FS ≥ 1.5

Structure	a_h/g
Tribunals	0.18
General edification	0.15
Street	0.12

Horizontal accelerations used in the dynamic earth pressure and anchor analysis

Anchor design

- Stability analysis results obtained from GGU-Retain software allow for:
- Anchor loads, free length, grouting length and number of cables
- Limit tension of the anchor

 $T_u = \pi D_s L_s q_s$

 $D_s \approx \alpha D_d$ is the mean diameter of the grouting section, $\alpha = 1.2$ is an injection coefficient IGU (Injection Global and Unique), D_d perforation diameter, L_s length of grouting, $q_s \approx 300$ kPa limit friction from SPT

• To supply the strength required a number *n* of cables is calculated using the following values:

Parameter	value
Cable diameter D, mm	15.2
Cable area A_c , mm ²	140
Yield stress f_{y} , MPa	1670
Characteristic ultimate load T, kN	250
Characteristic yield load T_y , kN	235

$$T_a = nA_{o}f_{y}/FS$$

FS = 1.5

N° of cables	Allowable load, kN
2	313
3	470
4	627
5	783
6	940

 $T_o \rightarrow T_a$ anchor resistance from GGU per spacing 3.2 m

Anchor loading test with 3 cables in second row

•Maximum capacity defined as: 90% of T_v = 235 kN x 3 = 635 kN

• L_s = 2.5 m (grouting length)

•Linear response up to 325 kN and considerable recovery during unloading

•Stopped when d = 55 mm due to larger stiffness reduction

• No cable failure was measured, before mobilising grouting strength

•Coincidentally a maximum capacity assumed is 635 kN

•Dense sand according to Ostermayer (1974)

Stability analysis following the construction sequence

- Excavation geometry, soil deposits, water table level, street and buildings on the side
- Results of lateral earth pressure, moment, shear and axial loads, lateral deformation

Stability analysis without anchor, 2 m

Stability analysis with one anchor at 1 m, 6 m

Stability analysis with two anchors at 1 m and 5.5 m, 8.1 m excavation depth

Anchor design

	$T_o \mathrm{kN}$	L	L_s	β	buildings	D_f
		m	m	0		m
°////	350	12.5	8	30	Fiscalía,	0
	280	8.5	4	25	Tucapel St	
	370	12.5	8	30	Entrances	1.5
	480	11	6.5	25	INP	
	450	11.5	7	45	INP	5
	325	9	4.5	35		
	410	12	7.5	40	Hites	5
	300	8.5	4	30		
	350	12.5	8	30	Tribunals	3
	330	9	4.5	25		
	330	13	8.5	30	Tribunals	3
	520	12.5	8	25		
	400	12.5	8	35	Tribunals	5.5
	300	8.5	4	25		
	370	12.5	8	30	Barros	1.5
	480	11	8.5	25	Arana St	

 T_o anchor resistance from GGU per spacing 3.2 m

L total length, L_s grouting length, β angle of anchor inclination, free length 4.5 m

Final remarks

- 3596 m² of SPW with 314 postensioned anchors under loads between 300 and 560 kN
- 300 H sections totalling 3200 m
- Transfer of loads from definitive RC walls and slabs to H piles
- Integrity of timber and H piles with time?
- No damage (cracks) has been found after the 27 February earthquake $M_w = 8.8$
- Further research is suggested by monitoring

Contacts:

orostegui@lancuyen.cl avillalobos@ucsc.cl www.civil.ucsc.cl

