oncepción, Enero del 2008

Felipe Villalobos Universidad Católica de la Santísima Concepciór

FOUNDATIONS FOR OFFSHORE WIND TURBINES

http://www.kentishflats.co.u

Offshore wind energy in Europe

The foundation problem

Environmental Forces:

Waves + Wind + Currents

Gravity

Gravity base and pile foundations Limited by sea depth (< 10 m) and turbine size (< 3 MW)

Gravity base foundation being floated out to Tunoe Knob Photograph © 1996 by Flemming Hagensen

Gravity base foundations at Nysted

Monopile foundation at Kentish Flats

For larger turbines (> 4 MW) foundation sizes and time increase considerably

Ems Emden 4.5 MW turbine

Suction caissons

3 m diameter suction caisson

ROV pump (remote operated vehicles)

12 m diameter suction caisson

Research programme

Theoretical analyses

Trials and monitoring offshore

Laboratory model tests

Field trials

Experimental procedures

Installation results

-The use of suction reduces the net vertical load required to install a caisson

-This is possible due to the hydraulic gradients created by the application of suction

Yield surface from load-displacement response

Final Comments

- The foundation design is governed by the harsher and cyclic nature of loading conditions offshore
- Suction caisson foundations might become an option, in particular for large wind turbines
- Beneficial effect in the monotonic and cyclic response of the caisson when the vertical load increases
- Results to be used in the construction of a hyperplasticity model

http://www.civil.ucsc.cl avillalobos@ucsc.cl